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MECHANISMS OF PHOTOCHEMICAL REACTIONS OF TRANSITION METAL COMPLEXES:

EXCITED STATE ELECTRON TRANSFER AND ORGANOMETALLIC PHOTOCHEMISTRY

MARK S. WRIGHTON

Department of Chemistry
Massachusetts Institute of Technology
;aiirldge, Massachusetts uZ139 (USA)

Abstract: This article summarizes two major areas of research, electron transfer
and organometallic photochemistry, addressed during the last dozen or so years.
The article emphasizes aspects of the mechanisms of photochemical reactions of
transition metal complexes in these two areas. Excited state electron transfer
and photoreactions of organometallic complexes have been, and will be, major
areas of research opportunity. Practical applications may come in the fields of
energy conversion and catalysis.

Inorganic photochemistry is a field that once focused on the substitution

and redox chemistry of Werner complexes in aqueous media. 1 Now, the field

includes significant contributions involving many classes of compounds involving

many different types of one-electron excited states. 2 In this retrospective

view I shall focus on two areas of the field where remarkable progress has been

made and where much can be expected in the future: excited state electron

transfer and organometal 1 tc photochemistry.

Electron Transfer To and From Photoexcited MetalComplexes. The fact that a

photoexcited molecule can be a more potent oxidant and a more potent reductant

than the ground state can, in principle, be exploited to effect the conversion

of light to chemical and/or electrical energy. No additional evidence beyond

the knowledge that natural photosynthesis works is needed to establish that

photochemical energy conversion is a practical possibility. For inorganic

.photochemists a 1972 report3 by A.W. Adamson and H.I. Gafney on Ru(bpy)32+

(bpy a 2,21-bipyridine) can be regarded as the initial stimulation for an

enormous thrust in research of excited state electron transfer reactions of
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metal complexes. Much of the research has been carried out with the hope of

being able to sensitize the oxidation and reduction of H20 to effect the

generation of fuel (H2 and 02) from H20 and sunlight. The research has involved

some of the most active groups in inorganic photochemistry and many reviews have

appeared from these groups in recent years. 4- 9

The research of excited state electron transfer of metal complexes has

involved not only Ru(bpy)32+ and related Os species, but also complexes having

metal-metal bonds such as Re2Cl8 2- and Ph3SnRe(CO)3(1,10'-phenanthroline), 11

as well as high nuclearity systems such as Mo6Cll42 .12 A feature that these

systems have in comon is that the lowest excited state is relatively long-lived

and generally emissive in fluid solution at room temperature. The long lifetime

is essential to the ability to efficiently quench the excited species in a

bimolecular reaction, equation (1a) or (1b). The discovery of a large number of

M* + Q1 "* M+ + Q1" (1a)

M* + Q2  M- + Q2 +  (1b)

long-lived photoexcited transition metal complexes in the past dozen years has

been crucial to the development of the present understanding of the various

excited state processes in general, and in particular, has allowed the detailed

investigation of bimolecular electron transfer reactions.

Studies of the electron transfer quenching of excited metal complexes has

revealed a great deal about the properties of the metal complexes, but there has

been only limited success in sensitizing the sustained formation of high energy

redox products such as H2 and 02 from H20. Generally, the excited complexes are

only one-electron transfer reagents, while the desired products require more

than one electron per molecule formed. The basic difficulty stems from the fact
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that the ultimate formation of energy-rich redox products involves a primary

one-electron step as in equation (la) or (ib). The primary products M+ + QI" or

1- + Q2+ are thermodynamically unstable as desired, but unfortunately, the

primary products are generally labile and react rapidly according to equations

(2a) and (2b). So-called back reactions of this kind degrade optical energy to

M+ + Q--- M + Q1 + heat (2a)

M- + Q2+- M + Q2 + heat (2b)

heat. There are many schemes where a sacrificial reagent such as EDTA allows the

generation of H2 as in equations (3)-(6). In this scheme MV2+ is N,N'-dimethyl-

Ru(bpy)32+ -- [Ru(bpy)3 2+]* (3)

[Ru(bpy)32+]* + Mv2+---. MV+ + Ru(bpy)33+ (4)

Ru(bpy) 33+ + EDTA-. Ru(bpy)32+ + oxidation product(s) (5)

My+ + H+ catalyst i My2+ + 1/2H2 (6)

4,4'-bipyridinium and the catalyst can be a high surface area suspension of Pt.

In this complicated, but now familiar, scheme the EDTA is irreversibly oxidized

by the primary, photogenerated oxidant Ru(bpy)33+ to regenerate Ru(bpy) 32+,

precluding back reaction with the reductant MV+ that can be used to generate H2

via a catalyzed process, equation (6). Unfortunately, H2 generation occurs at

the expense of EDTA. In such a case it is not even evident that the net

sensitized reaction is an overall up-hill process.

The Ru(bpy)3 3+ formed in the quenching step, equation (4), is a sufficiently

potent oxidant that H20 could be oxidized to 02, but this four-electron process,

like H2 evolution, requires catalysis. A catalyst system that will
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allow the use of H20 as the only sacrificial reagent in the photosensitized

formation of H2 and 02 has not yet been devised. The photosynthetic syster uses

CO2 and H20 as sacrificial reagents to effect formation of reduced carbon

compounds and 02. A key to the efficiency of the photosynthetic system is

likely the structured arrangement of the components of the photosynthetic

apparatus that cannot be Imitated by homogeneously dissolved complexes. The

natural apparatus is arranged such that back reaction of early high-energy redox

products is inhibited. Transition metal complexes that efficiently absorb light

and undergo electron transfer processes to give energetic redox products exist.

But inhibiting back reaction has not been achieved with molecular-based systems.

This problem is of paramount significance and is the key to success in photo-

chemical energy conversion. Future work will likely be directed toward inter-

facial systems where some success has already been realized, as at

semiconductor/liquid electrolyte interfaces,1 3

hle the practical objective of energy conversion has not yet been

realized, the area of excited state electron transfer will remain active in

order to continue the establishment of the basic properties of excited states.

Additional application areas may include. imaging systems and stoichiometric

synthesis, both of which may prove easier to achieve than largescale energy

conversion systems. In many situations it will be necessary to synthesize

organized assemblies, in order to achieve desired results; this will be

especially important to achieve efficient photochemical energy conversion.

Organometallic Photochemistry. Organometallic complexes have been the object of

intense study in several major research groups. Much of the work has been

carried out with the underlying objective of synthesizing new catalysts and

reactive intermediates. The photoinduced reductive elimination of H2 from

di- and polyhydrides to generate coordinatively unsaturated species (typically

.



16 e- complexes) has been established as a major photoreaction class.
14

Additionally, M-M bond cleavage has been established as a general photoreaction

class for complexes having 2 e- M-M bonds, 15 e.g. Mn2(CO)10 , to give 17 e-

radicals and more recently 15 e- radicals from Pd-Pd cleavage in Pd2(CNR)6
2+.16

However, as for many classical Werner complexes,1 ligand photosubstitution of

organometallic complexes, and especially of metal carbonyls, has been the most

active area of organometallic photochemistry. 7 In the case of organometallic-

complexes, though, the photosubstitution chemistry is being extended to the

study of high nuclearity clusters such as H4Ru 4 (CO) 12
, 18 Two of the dominant

themes in organometallic photochemistry that will continue to thrive are low

temperature photochemistry and catalysis.

The application of low temperature matrix photochemistry techniques to

organometallic complexes has proven fruitful in characterizing photogenerated

intermediates and in establishing mechanisms of photochemical reactions at room

temperature. Early experiments concerned the study of M(CO)6 by R.K. Sheline

and co-workers.19 In the early 1970's J.J. Turner and his co-workers made

significant contributions showing that a large number of mononuclear metal

carbonyls, XYM(CO)n, lose CO to give coordinatively unsaturated, typically 16

e-, complexes, XYM(CO)n.1, that can be spectroscopically characterized in rigid

matrices. 20 Many additional reports have followed that directly establish the

nature of the intermediates in room temperature photoreactions. 21 Recent

attention has turned to di-, 22 trn-, 23 and tetranuclear 18 clusters with the

first examples of the photogeneration of coordinative unsaturatlon in higher

nuclearity clusters. These results are of possible consequence due to the

belief that clusters may serve as models for heterogeneous metallic catalysts.

The combination of low temperature photolysis followed by warm-up can lead

to direct observation of the elementary steps in a room temperature
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photoreaction. A simple example is to warm a photogenerated 16 e- species in

the presence of a 2 e- donor ligand to observe the generation of a net photo-

substitution product. The unimolecular reaction represented by equation (7) has

(T5-C5H5)W(CO)3C2H5  hv trans-(n5-C5H5)W(CO)2(C2H4)(H) + CO (7)

been shown24 to proceed via .primary loss of CO to give a 16 e- species that can

be detected at 77 K. The 16 e- species gives the final product thermally upon

warming to 196 K with a t1/2 - 10 s. Such chemistry can also be monitored when

the organometallic species is anchored to a surface.25 The exciting prospect for

surface-bound molecules is that it may be possible to selectively generate active

sites on surfaces and to study interfacial reactions with molecular specificity.

In a more complex situation, the bimolecular photochemistry represented by

equation (8) has been shown26 to proceed via (1) photochemical loss of CO,

Et3SiCo(CO)4 + Ph3SiH - v Ph3SiCo(CO) 4 + Et3SiH (8)

(ii) thermal oxidative addition of Ph3SiH, (iii) thermal reductive elimination of

Et3SiH, and (iv) thermal uptake of CO. Each of the intermediates has been

observed spectroscopically. Such systems establish that relatively complex

photoreaction mechanisms can be established. It is likely that the methodology

can be used to establish the viability of catalytic cycles. The essential is

that there be a thermally inert, but photolabile precursor to each proposed

intermediate. A start has been made in the observation of all intermediates in

the Fe(CO)s-photocatalyzed isomerizatlon of alkenes,27 and in catalyzed reactions

of alkynes using carbene complexes.28

Concerning catalysis, it is worth noting the application of organometallic

photochemistry in the discovery of the first examples of addition of simple

alkanes, RH, to discrete metal complexes, equations (9)29 and (10).30 These

iX6624* Z
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(S-CsMes)Ir(PMe3)(H)2 hv -- I. (n5-CsMe)Ir(Pe3)(R)(H)+ H2  (9)
RH ( 5-te)r(e)()H 2
hv

(n5 "CsMe)Ir(CO)2 --- (r5 "CsMes)Ir(CO)(R)(H) + CO (10)

reactions proceed, presumably, via primary loss of H2 and CO, respectively, to

give very active 16 e- species. These systems may provide the basis for

photochemical functionalization of alkanes.

The future of organometallic photochemistry is bright. New, detailed

understanding of electronic structure of complexes having unusual geometrical

structures will lead to new photochemistry in that new intermediates can be

reactions. Additionally, the application of fast kinetic techniques,.especially

those employing molecular specific diagnostics, in this area will prove very

fruitful in unravelling mechanisms of stoichiometric and catalytic reactions. A

conscious effort to discover new photoreactions will likely be very fruitful

inasmuch as there are major classes of organometallic complexes that have not

been systematically investigated.
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